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Analysis of Noise Effects on the Nonlinear Dynamics
of Synchronized Oscillators

Samuel Ver Hoeye, Almudena Suárez, Senior Member, IEEE, and Sergio Sancho

Abstract—The higher sensitivity to noise of nonlinear systems
near the onset of instability is analyzed here. The analysis is par-
ticularized to synchronized oscillators, studying the influence of
the proximity to Hopf and Saddle–Node bifurcations. The calcu-
lations are compared with former scaling relationships and with
results from time-domain integration. The average shift of bifurca-
tion points due to noise perturbations is also analyzed. Two exam-
ples are shown: a cubic-nonlinearity oscillator and a 5 GHz hybrid
oscillator, for experimental verifications.

Index Terms—Bifurcation, frequency conversion, Nyquist sta-
bility, oscillator noise, synchronization.

I. INTRODUCTION

M ANY authors [1]–[3] have observed the higher sensi-
tivity to noise of nonlinear systems near bifurcations.

The increase in the noise power, as the critical point is
approached, is shown in [3], by making use of the conver-
sion-matrix approach. Near a Hopf bifurcation (onset of a
natural frequency [4]), the transient is a damped oscillation at
the natural frequency, while, for instance, near a flip bifurcation
(frequency division by two [4]), it is a damped oscillation of
double period. The damping ratio is very low and, if noise is
present in the system, the steady-state orbit is continuously
perturbed, which makes observable the particular characteris-
tics of the transient. This gives rise to noise amplification and
bumps in the power spectrum or noisy precursors.

In the neighborhood of the bifurcation, complex nonlinear
phenomena may also be observed. As an example, when two
stable steady states of the unperturbed system coexist (for the
same parameter values) and are close in the phase space, the
solution may jump from one to another, under the noise influ-
ence (stochastic resonance). Another nonlinear phenomenon is
the average shift of the bifurcation point due to the noise influ-
ence [5].

The analysis here is particularized to synchronized oscilla-
tors. Two examples are shown: a cubic nonlinearity oscillator
and a 5 GHz hybrid oscillator.

II. NOISY PRECURSORS

The Poincaré map of a nonautonomous circuit is obtained
by sampling its steady state at integer multiples of the
input generator period. Application of this technique to the
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cubic-nonlinearity oscillator in [4] provides the bifurcation di-
agram of Fig. 1(a), traced versus the input-generator frequency

, for constant input-generator current mA. The
sampled variable is the voltage across the nonlinearity .
A noise-free circuit (black) and a white-noise current source
(grey), with spectral density A Hz, have been
considered. Fig. 1(b) shows the locus of the Floquet-multipliers
[1] with the generator frequency as implicit parameter. The
onset of the quasiperiodic regime is due to a saddle-node
bifurcation at 1.58 MHz (one multiplier crossing the unity
circle at ) and to a Hopf bifurcation at 1.33 MHz (two
complex-conjugate multipliers crossing the circle at ).

The multipliers are related to the Floquet exponents
through: , with the period of the
steady-state solution. Note that there is not a univocal relation-
ship between Floquet multipliers and exponents, since there is
always a possible shift , with integer. At a Hopf
bifurcation, a new fundamental arises and .
For a saddle-node bifurcation, there is no onset of new funda-
mentals and . Wiesenfeld [2] approximates the
near-critical multipliers as , being the distance
to the border of the unit circle. A multiplier with magnitude
close to one means a long lasting transient, due to the small
value of . This slow transient, continuously interrupted by
the noise perturbation, gives rise to an amplification of the
noise spectrum, about the frequencies (saddle node), or

(Hopf bifurcation).
For the analysis of the amplification effects, a deterministic

tone can be considered. When the circuit op-
erates close to a bifurcation, this tone introduces pairs of lines
about , whose power increases [2] for a decrease of
or/and a decrease of the frequency detuning ,
with the closest critical frequency. Here similar scaling prop-
erties to [2], have been obtained when using the stability margin

, instead of . This margin is calculated here as the minimum
distance to the origin of the Nyquist plot. The power of the spec-
tral lines is approached by

(1)

where is an unknown proportionality constant that has
to be fitted. The Lorentzian lines obtained by sweepingin
(1) become higher and narrower as the bifurcation point is
approached. Clearly, the impact of precursors in the spectrum
depends on the stability margin and its evolution versus the
parameter. On the other hand, the scaling rule (1) fails in the
immediate neighborhood of the bifurcation, since nonlinear
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Fig. 1. Cubic nonlinearity oscillator [4], withI = 20 mA. (a) Poincaré map,
sampling the voltagev, across the nonlinearity, (b) locus of Floquet multipliers
m (k = 1; 2), with the generator frequency as implicit parameter, (c) output
spectrum forf = 1:34 MHz, close to the Hopf bifurcation, and (d) output
spectrum forf = 1:57 MHz, close to the saddle-node bifurcation. In (c) and
(d), the solid line is the frequency-domain simulation.

effects (due to the high power values) must be taken into
account.

Frequency-domain linearization should enable the calcula-
tion of noisy precursors with the same restrictions as Floquet
analysis [1]. The advantage over the time-domain techniques is
the wider applicability to microwave circuits, due to the usually
long transients of these circuits with respect to the signal pe-
riod. Here, for the harmonic-balance analysis of the noisy pre-
cursors, an auxiliary generator AG, with negligible amplitude
, is introduced at the noise-source location .

For a voltage output variable and sweeping , this generator
enables the calculation of the whole matrix relating to

(conversion-matrix approach), where, (integers)
are the harmonic indexes referring toand are the indexes
referring to . For Hopf bifurcations with ,
the spectrum bumps closest to are due to the amplification
of input noise about and (image frequency). Both
in this case and for saddle-node bifurcations, the bumps are ob-
tained, when sweeping, from the matrix terms relating
and , to both and . In the noise spec-
trum calculation, the whole conversion matrix and the possible
correlation of the noise sources must be taken into account.

The former technique has been applied for the analysis of
the noisy precursors of the cubic-nonlinearity oscillator [4]. The
results (solid line) are shown in Fig. 1(c) (close to the Hopf
bifurcation) and Fig. 1(d) (close to the saddle-node bifurcation).
Time-domain simulations have also been carried out, with an
excellent agreement.

III. STOCHASTICSHIFT OF THESTABILITY THRESHOLD

The presence of noise in a nonlinear circuit may give rise to
an average shift of its stability thresholds. The shift depends on
the amplitude and statistical properties of the noise perturbation.
It is due to variations in the average magnitude of the Floquet
multipliers, which may be decreased below unity or increased
above unity [5]. To show this effect, the circuit bifurcation dia-
gram is traced here by averaging the amplitude of one of the har-
monic components for different time-domain realizations of the
noise source (with the same power spectral density). This anal-
ysis, requiring time-domain simulations, has been applied to the
cubic-nonlinearity oscillator. An intrinsic white-noise voltage
source, in series with the nonlinearity, is initially considered,
with spectral density V Hz. The resulting bifurcation
diagram, close to the saddle-node (and averaging the first har-
monic component), is shown in Fig. 2(a). As can be seen, noise
reduces the bifurcation threshold.

In the frequency domain, the study of the bifurcation shift has
been carried out versus a sinusoidal perturbation: . A
nonlinear analysis of the mixing steady state (withand
as fundamentals) is performed. Then the stability is analyzed
through the Nyquist plot, applying [6]. The results have evi-
denced higher sensitivity for close to . In Fig. 2(b), curve A
shows the Nyquist plot for very close to and V.
The stability margin is decreased, in agreement with the time
domain simulation. For low , a high amplitude was necessary

V, the effect being a stabilization of the synchro-
nized solution (curve B).
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Fig. 2. Shift of the saddle-node bifurcation threshold. (a) Averaged bifurcation
diagram for intrinsic white noise, with spectral density10 V =Hz. The
represented variable is the averaged first-harmonic component of the voltage
across the nonlinearity and (b) Nyquist plot, using [6]. The functionH
is defined in [6]. Plot A: a sinusoidal tone close to! , with amplitude
E = 10 V. Plot B: a low-frequency sinusoidal tone, with amplitude
E = 10 V.

IV. EXPERIMENTAL RESULTS

As a final verification, a 5 GHz FET-based synchronized os-
cillator has been simulated and experimentally characterized.
A Hopf-type bifurcation was obtained for dBm and

GHz. In Fig. 3(a), the output-power spectrum has
been determined (considering noise sources from the input gen-
erator and the oscillator itself) for two different input frequen-
cies: GHz and GHz, to evidence the
scaling properties of the precursors. One of the bumps is fixed
at GHz, while the other one (placed at ) moves
with the generator frequency. Noise power about the carrier is
smaller than the precursor power. The experimental spectrum
of Fig. 3(b) corresponds to GHz, in the immediate
neighborhood of the bifurcation point. The higher noise power
about the carrier is due to nonlinear mixing effects, already
present for this value (extremely close to the bifurcation),
which completely overwhelm the linear predictions.

V. CONCLUSION

An analysis of the influence of noise on the nonlinear dy-
namics in the proximity to bifurcations has been carried out
here. The formation of noisy precursors when approaching Hopf
and saddle-node bifurcations, encountered in synchronized cir-
cuits, has been studied, comparing the predictions of time and

(a)

(b)

Fig. 3. Precursors of Hopf bifurcation for input powerP = �6 dBm. (a)
Simulation forf = 5:19 GHz and 5.235 GHz and (b) Measurement forf =

5:24GHz, in the immediate neighborhood of the bifurcation. Nonlinear mixing
effects are already present.

frequency-domain analysis techniques. The stochastic shift of
the bifurcation threshold has also been analyzed, through aver-
aged bifurcation diagrams.
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